Thursday, December 8, 2016

Modéliser plus pour simuler moins


Frédéric Alexandre, vous êtes chercheur au Laboratoire bordelais de recherche en informatique (LaBRI1) et intervenant du colloque « Modélisation : succès et limites » du 6 décembre 2016.  Qu’entend-on au juste aujourd'hui par modélisation et simulation ?

F. A. : La dimension numérique s'est intensément développée dans tous les domaines où l'on sait représenter les phénomènes par des équations que l'on peut ensuite implanter informatiquement – on parle alors de modèles de connaissance. Ce phénomène s’est amplifié, surtout dernièrement avec la possibilité d'utiliser les données massives (big data) et l’apprentissage automatique (machine learning) pour faire des statistiques – on parle dans ce cas de modèles de représentation.
Mais construire une maquette et la mettre dans une soufflerie, c’est aussi modéliser et simuler. Construire un modèle est un processus particulier : il s'agit de choisir un cadre théorique, un formalisme pour décrire un objet d’étude, et que l'ensemble soit adapté à la question que l’on se pose sur cet objet. C’est aussi prévoir, dès sa conception, le moyen de valider ce modèle : il faut pouvoir montrer qu’il répond bien à la question posée. Le simuler, c’est le mettre en œuvre informatiquement, via des logiciels en adoptant notamment des schémas de calcul, et des matériels en utilisant une architecture adaptée aux calculs à réaliser, pouvant associer des processeurs spécifiques comme des processeurs graphiques, des grappes de machines homogènes (clusters) ou un ensemble de ressources hétérogènes et éventuellement délocalisées, la grille. Il faut également noter que gérer ces matériels nécessite de recourir à des logiciels dits intermédiaires (middleware). Le principe de cette simulation consiste à pouvoir, à ce stade, faire varier des paramètres pour voir comment le modèle évolue.

----
On nous annonce depuis longtemps la fin de la loi de Moore relative à l'accroissement régulier de la puissance des ordinateurs. Le débat pourrait effectivement porter sur le fait que cette étape commence effectivement à se faire sentir ou que le génie humain trouvera toujours des solutions de substitution. Mais je pense qu'il est plus important de savoir si l’on a intérêt à développer des modèles de plus en plus complexes lorsque cela se fait au détriment d'une réflexion sur la nature et la pertinence des modèles utilisés. Et puis, faire tourner des clusters de machines a aussi un coût économique et écologique !
Ensuite, et de façon peut-être plus profonde, faire tourner rapidement un modèle en dehors de ses limites de validité ne le rend pas plus valide !
Un modèle plus simple mais plus adapté est toujours préférable. Autant on peut justifier l'accroissement du recours aux simulations quand il s'agit de faire tourner un modèle plus longtemps, sur une plus grande extension spatiale, ou de tester plus de jeux de paramètres, autant il convient de rester prudent quand on change d’échelle ou quand, par exemple, on agrège plusieurs modèles.

----
Vaudrait-il mieux complexifier ou plutôt simplifier ces modèles et simulations pour s'approcher au mieux de la réalité ?
F. A. : Pour répondre à cette question difficile, il faut d’abord introduire un autre acteur. En plus des modèles théoriques associés aux simulations numériques, il y a maintenant le duo big data-machine learning : là, des corpus gigantesques sont analysés par des procédures d’apprentissage automatique s’appuyant sur des modèles statistiques. Par exemple, dans le domaine du traitement automatique du langage, plutôt que de travailler sur la mise au point de modèles de langage, il est aujourd’hui plus efficace d’analyser statistiquement des corpus de millions de phrases pour faire des systèmes de traduction automatique performants. Et l'on peut penser qu’il en sera bientôt de même pour la description d’objets physiques où le recours aux équations de la physique sous-jacente serait moins efficace que l’analyse d’un corpus d’exemples…
Sans remettre en cause les performances bien réelles et même impressionnantes de ces systèmes, on peut simplement remarquer qu’ils poussent au bout la logique de la puissance de calcul au détriment de l’analyse de l’objet d’étude. Analyse qui aurait pu parfois permettre de trouver une solution plus élégante et surtout plus porteuse de sens. De gros modèles très paramétrés peuvent coller à beaucoup de données sans en extraire la logique sous-jacente. Prédire n’est pas expliquer, rappelle René Thom.

Et surtout – pour répondre enfin à la question –, ces deux approches, tant statistiques que théoriques, couplées à une utilisation massive de la simulation oublient parfois le principal : quelle est la question posée et le modèle est-il bien conçu pour y répondre ? Ces approches massives sont bien adaptées et commencent aujourd’hui à être bien maîtrisées sur des questions relatives à des phénomènes relativement réguliers. Toutefois, dès lors que ces phénomènes impliquent des considérations humaines, sociales, politiques ou cognitives, bien formuler les questions que l’on se pose et définir un modèle plus simple est souvent plus pertinent qu’appuyer tout de suite sur le bouton rouge de la simulation.

https://lejournal.cnrs.fr/articles/modeliser-plus-pour-simuler-moins

No comments:

Post a Comment